What is the antiderivative of #Cos(2x)Sin(x)dx#?

2 Answers
Feb 6, 2017

#intcos2xsinxdx=1/2int(2cos2xsinx)dx#
#=1/2int{sin(2x+x)-sin(2x-x)}dx#
#=1/2int(sin3x-sinx)dx#
#=1/2{-cos(3x)/3-(-cosx)}#
#=-1/6(cos3x-3cosx)+C.#

Feb 6, 2017

# int \ cos(2x)sinx \ dx = 1/2cosx-1/6cos3x+ C #

Explanation:

We use a little trick to express the integrand as the sum of multiple angles and then use the trig multiple angle formula:

# 2 sin A cos B = sin (A +B) + sin (A -B) #

And we get;

# int \ cos(2x)sinx \ dx = 1/2 \ int \ 2sinxcos(2x) \ dx #
# " "= 1/2 \ int \ sin(x+2x) + sin(x-2x) \ dx #
# " "= 1/2 \ int \ sin(3x) + sin(-x) \ dx #
# " "= 1/2 \ int \ sin(3x) - sin(x) \ dx #

We can now easily integrate this:

# int \ cos(2x)sinx \ dx = 1/2 \ (-1/3cos3x+cosx) + C #
# " "= 1/2cosx-1/6cos3x+ C #