Let us observe that the general #n^(th)" term "T_n# of the given
Series is given by,
#T_n^2=1+1/n^2+1/(n+1)^2#
#={n^2(n+1)^2+(n+1)^2+n^2]/{n^2(n+1)^2}#
#=[{n(n+1)}^2+n^2+2n+1+n^2]/{n(n+1)}^2#
#=[{n(n+1)}^2+2n^2+2n+1]/{n(n+1)}^2#
#=[{n(n+1)}^2+2(1){n(n+1)}+1^2]/[{n(n+1)}^2}#
#={n(n+1)+1}^2/[{n(n+1)}^2}#
#=[{n(n+1)+1}/{n(n+1)}]^2#
#rArr T_n={n(n+1)+1}/{n(n+1)}={n(n+1))/{n(n+1))+1/{n(n+1)}#
#rArr T_n=1+{(n+1)-n}/{n(n+1)}=1+cancel(n+1)/{n(cancel(n+1))}-canceln/{canceln(n+1)}#
#:. T_n=1+1/n-1/(n+1)#
Hence, #S_n=sumT_n=sum[1+1/n-1/(n+1)]#
#=sum1+sum{1/n-1/(n+1)}=n+sum{1/n-1/(n+1)}#
#=n+{(1/1cancel(-1/2))+(cancel(1/2)cancel(-1/3))+(cancel(1/3)cancel(-1/4))+...+(cancel(1/(n-1))cancel(-1/n))+(cancel(1/n)-1/(n+1)}#
#"So, in general, "S_n=n+{1-1/(n+1)}=(n+1)-1/((n+1)).#
In particular, #S_2016=2017-1/2017.#
Enjoy Maths,, and Spread its Joy!