How do you find #f^6(0)# where #f(x)=xe^x#?

2 Answers
Feb 6, 2017

#f^((6))(0)=(0+6)e^0=6.#

Explanation:

#f(x)=xe^x#

By the Product Rule, #f'(x)=x(e^x)'+(e^x)(x)'#

#:. f'(x)=xe^x+e^x=(x+1)e^x..........................(1)#

This means that, #{xe^x}'=(x+1)e^x.............(star)#

#"Now, "f''(x)={f'(x)}'={xe^x+e^x}'={xe^x}'+(e^x)'#

#=(x+1)e^x+e^x,....................[because, (star)]#

#:. f''(x)=(x+2)e^x...................................(2)#

#"As, "f''(x)=xe^x+2e^x," we have, by "(star),#

#f'''(x)={f''(x)}'={xe^x}'+(2e^x)'=(x+1)e^x+2e^x, i.e.,#

#f'''(x)=(x+3)e^x#.......................................(3)#

#"Generalising, "f^((n))(x)=(x+n)e^x, n in NN.#

#"In Particular, "f^((6))(x)=(x+6)e^x," giving,"#

#f^((6))(0)=(0+6)e^0=6.#

Spread the Joy Maths.!

Mar 12, 2017

We can also use the Maclaurin series for #e^x#:

#e^x=sum_(n=0)^oox^n/(n!)=1+x+x^2/(2!)+x^3/(3!)+x^4/(4!)+...#

Multiplying this by #x# we see that:

#xe^x=x(1+x+x^2/(2!)+x^3/(3!)+x^4/(4!)+...)=x+x^2+x^3/(2!)+x^4/(3!)+x^5/(4!)+...#

Or:

#xe^x=sum_(n=0)^oox^(n+1)/(n!)#

A general Maclaurin series is given by:

#f(x)=sum_(n=0)^oof^n(0)/(n!)x^n#

So when #n=6# the #6#th term of any general Maclaurin series is #f^6(0)/(6!)x^6#.

Also note that the #n=5# term of the #f(x)=xe^x# series is #x^6/(5!)#.

Equating their coefficients:

#f^6(0)/(6!)x^6=x^6/(5!)#

#f^6(0)=(6!)/(5!)=6#