Question #57b0f Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Feb 7, 2017 see below Explanation: Left Hand Side: Use the formulas: # sin x - sin y = 2 cos (1/2 (x+y) )sin (1/2 (x-y))# # cos x + cos y = = 2 cos ( 1/2 (x+y)) cos (1/2 (x-y))# #(cosx+cosy)/(sinx-siny)=(2cos(1/2 (x+y))*cos(1/2 (x-y)))/(2cos(1/2 (x+y))*sin(1/2 (x-y)))# #=(cancel(2cos(1/2 (x+y)))*cos(1/2 (x-y)))/(cancel(2cos(1/2 (x+y)))*sin(1/2 (x-y)))# #=cos(1/2 (x-y))/(sin(1/2 (x-y))# #=cot (1/2 (x-y))# #:.=# Right Hand Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 1182 views around the world You can reuse this answer Creative Commons License