How do you simplify the factorial expression #((2n-1)!)/((2n+1)!)#?

1 Answer
Feb 8, 2017

# ((2n-1)!)/((2n+1)!) = 1/((2n+1)(2n))#

Explanation:

Remember that:

# n! =n(n-1)(n-2)...1 #

And so

# (2n+1)! =(2n+1)(2n)(2n-1)(2n-2) ... 1#
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \=(2n+1)(2n)(2n-1)!#

So we can write:

# ((2n-1)!)/((2n+1)!) = ((2n-1)!)/((2n+1)(2n)(2n-1)!) #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =1/((2n+1)(2n))#

Example: #n=10#

# LHS = (19!)/(21!) \ \ \ \ \ = 1/420#
# RHS = 1/(21*20) = 1/420#