How do you find the indefinite integral of #int cost/(1+sint)#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Noah G Feb 8, 2017 #ln|sint + t| + C# Explanation: Let #u = sint + 1#. Then #du = cos t dt# and #dt = (du)/cost#. #=>int cost/u * (du)/cost# #=>int 1/u du# #=>ln|u| + C# #=>ln|sint + t| + C# Hopefully this helps! Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 6362 views around the world You can reuse this answer Creative Commons License