Step 1) Solve the first equation for #x#:
#x + 5y = -3#
#x + 5y - color(red)(5y) = -3 - color(red)(5y)#
#x + 0 = -3 - 5y#
#x = -3 - 5y#
Step 2) Substitute #-3 - 5y# for #x# in the second equation and solve for #y#:
#3x - 2y = 8# becomes:
#3(-3 - 5y) - 2y = 8#
#(3 xx -3) - (3 xx 5y) - 2y = 8#
#-9 - 15y - 2y = 8#
#-9 - 17y = 8#
#color(red)(9) - 9 - 17y = color(red)(9) + 8#
#0 - 17y = 17#
#-17y = 17#
#(-17y)/color(red)(-17) = 17/color(red)(-17)#
#(color(red)(cancel(color(black)(-17)))y)/cancel(color(red)(-17)) = -1#
#y = -1#
Step 3) Substitute #-1# for #y# in the solution to the first equation at the end of Step 1 and calculate #x#:
#x = -3 - 5y# becomes:
#x = -3 - (5 xx -1)#
#x = -3 - (-5)#
#x = -3 + 5#
#x = 2#
The solution is: #x = 2# and #y = -1# or #(2, -1)#