How do you use the limit definition of the derivative to find the derivative of #f(x)=2x^2-3x+6#?

2 Answers
Feb 12, 2017

#(df(x))/(dx) = 2x+3#
(see below for method of derivation)

Explanation:

Given a function #f(x)#, the derivative of #f(x)# is defined as:
#color(white)("XXX")(df(x))/dx=lim_(hrarr0) (f(x+h)-f(x))/h#

If #f(x)=2x^2-3x+6#
then #f(x+h)= 2(x+h)^2-3(x+h)+6#
#color(white)("XXXXXXXX")=2x^2+2xh+h^2-3x-3h+6#
So
#f(x+h)-f(x) = color(white)("XX")2x^2+2xh+h^2-3x-3h+6#
#color(white)("XXXXXXXXXXX")-(underline(2x^2color(white)("XXXXXXX")-3xcolor(white)("XXX")+6))#
#color(white)("XXXXXXXXX")=color(white)("XXXXXX")2xh+h^2color(white)("XXX")+3h#

and
#color(white)("XXX")(f(x+h)-f(x))/h = 2x+h+3#

Therefore
#color(white)("XXX")(df(x))/(dx)=lim_(hrarr0) 2x+h+3 = 2x+3#

Feb 12, 2017

Evaluate the limit of the expression #lim_(h->0) (f(x + h) -f(x))/(h)#

Explanation:

So #lim_(h->0) ((2(x+h)^2 - 3(x+h) + 6) -f(3x^2 - 3x +6))/(h)#