How do you write #-3x+y=6# in standard form?

1 Answer
Feb 13, 2017

#color(red)(3)x - color(blue)(1)y = color(green)(-6)#

Explanation:

The standard form of a linear equation is: #color(red)(A)x + color(blue)(B)y = color(green)(C)#

where, if at all possible, #color(red)(A)#, #color(blue)(B)#, and #color(green)(C)#are integers, and A is non-negative, and, A, B, and C have no common factors other than 1

To transform this to standard form we need to multiply both sides of the equation by #color(purple)(-1)#

#color(purple)(-1)(-3x + y) = color(purple)(-1) xx 6#

#(color(purple)(-1) xx -3x) + (color(purple)(-1) xx y) = -6#

#color(red)(3)x - color(blue)(1)y = color(green)(-6)#