How do you divide #3\frac { 1} { 2} \div 5#?

2 Answers
Feb 18, 2017

#7/10#

Explanation:

The first step is to convert #3 1/2" # into an #color(blue)"improper fraction"#

#rArr3 1/2=7/2#

#rArr7/2÷5" is to be calculated"#

Change the operation to multiplication and 'invert' the 5

#rArr7/2xx1/5#

#=(7xx1)/(2xx5)#

#=7/10#

Feb 18, 2017

#7/10# two methods given

Explanation:

Consider the #3 1/2# write as: #3+1/2#

Multiply by 1 and you do not change the value. However,1 comes in many forms so you can change the way a number looks without changing its actual value.

#color(green)([3color(red)(xx1)]+1/2)#

#color(green)([3color(red)(xx2/2)]+1/2)#

#color(green)([6/2]+1/2)" "=" "(6+1)/2=7/2#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("So putting it all together")#

#3 1/2-:5" " =" " 7/2-:5#

#color(brown)("Shortcut method")#

Write as #7/2-:5/1 larr" Yes you can write 5 as "5/1#

For divide; turn the #5/1# upside and multiply

#color(blue)(7/2xx1/5 = (7xx1)/(2xx5) = 7/10)#

....................................................................................
#color(brown)("First principle method")#

Fraction #->("count")/("size indicator") ->("numerator")/("denominator")#

You can not #ul("directly")# divide the counts unless the 'size indicators are the same.

#7/2-:5/1" "->" "7/2 -: 10/2#

Now that the size indicators (bottom numbers) are the same we can divide just the counts (top numbers)

#color(blue)(7/2-:10/2 = 7-:10 = 7/10)#