How do you prove #(sec x + tan x)(1 - sin x) = cos x# ?

1 Answer
Feb 21, 2017

See explanation...

Explanation:

Use:

#sec x = 1/cos x#

#tan x = sin x/cos x#

#cos^2 x + sin^2 x = 1#

Then:

#(sec x + tan x)(1 - sin x) = (1/cos x + sin x/cos x)(1- sin x)#

#color(white)((sec x + tan x)(1 - sin x)) = ((1+sin x)(1- sin x))/cos x#

#color(white)((sec x + tan x)(1 - sin x)) = (1-sin^2 x)/cos x#

#color(white)((sec x + tan x)(1 - sin x)) = cos^2 x/cos x#

#color(white)((sec x + tan x)(1 - sin x)) = cos x#