How do you prove #(sec x + tan x)(1 - sin x) = cos x# ?
1 Answer
Feb 21, 2017
See explanation...
Explanation:
Use:
#sec x = 1/cos x#
#tan x = sin x/cos x#
#cos^2 x + sin^2 x = 1#
Then:
#(sec x + tan x)(1 - sin x) = (1/cos x + sin x/cos x)(1- sin x)#
#color(white)((sec x + tan x)(1 - sin x)) = ((1+sin x)(1- sin x))/cos x#
#color(white)((sec x + tan x)(1 - sin x)) = (1-sin^2 x)/cos x#
#color(white)((sec x + tan x)(1 - sin x)) = cos^2 x/cos x#
#color(white)((sec x + tan x)(1 - sin x)) = cos x#