How do you find the average value of the function for #f(x)=4-x^2, -2<=x<=2#?
1 Answer
Feb 25, 2017
The average value of the function
#A=1/(b-a)int_a^bf(x)dx#
So here the average value is:
#A=1/(2-(-2))int_(-2)^2(4-x^2)dx#
#A=1/4[4x-1/3x^3]_(-2)^2#
#A=1/4(4(2)-1/3(2)^3)-1/4(4(-2)-1/3(-2)^3)#
#A=1/4(8-8/3)-1/4(-8+8/3)#
#A=(2-2/3)+(2-2/3)#
#A=4-4/3#
#A=8/3#