What is the instantaneous velocity of an object moving in accordance to # f(t)= (tsin(2t-pi/2),cost) # at # t=(5pi)/4 #?
1 Answer
An object whose position is given by the parametric equation
Here
#x'(t)=(d/dtt)sin(2t-pi/2)+t(d/dtsin(2t-pi/2))#
#color(white)(x'(t))=sin(2t-pi/2)+tcos(2t-pi/2)(d/dt(2t-pi/2))#
#color(white)(x'(t))=sin(2t-pi/2)+2tcos(2t-pi/2)#
And
#y'(t)=-sint#
We find that
#x'((5pi)/4)=sin((5pi)/2-pi/2)+(5pi)/2cos((5pi)/2-pi/2)#
#color(white)(x'((5pi)/4))=sin(2pi)+(5pi)/2cos(2pi)#
#color(white)(x'((5pi)/4))=(5pi)/2#
And
#y'((5pi)/4)=-sin((5pi)/4)#
#color(white)(y'((5pi)/4))=1/sqrt2#
So the velocity vector at
The magnitude of the velocity (the speed) is given by
#=sqrt((25pi^2)/4+1/2)=1/2sqrt(25pi^2+2)#