Question #004d9

1 Answer
Feb 26, 2017

#lim_(xrarr2)(cos(pi/x))/(x-2)=pi/4#

Explanation:

#lim_(xrarr2)(cos(pi/x))/(x-2)#

Attempting to evaluate the limit gives #cos(pi/2)/(2-2)=0/0#, which is an indeterminate form. Thus, we can use l'Hopital's rule, which says to take the derivative of the numerator and denominator separately:

#=lim_(xrarr2)(d/dx(cos(pi/x)))/(d/dx(x-2))#

#=lim_(xrarr2)(-sin(pi/x)d/dx(pix^-1))/1#

#=lim_(xrarr2)(-sin(pi/x))(-pix^-2)#

#=lim_(xrarr2)(pisin(pi/x))/x^2#

The limit can now be evaluated:

#=(pisin(pi/2))/2^2#

#=pi/4#