What is #int_(pi/8)^((11pi)/12) cos^2xsinx-tan^2xcotx dx#?
1 Answer
Explanation:
The first step is to separate the integrals.
#int_(pi/8)^((11pi)/12) cos^2xsinxdx - int_(pi/8)^((11pi)/12) tan^2xcotxdx#
#int_(pi/8)^((11pi)/12) cos^2xsinxdx - int_(pi/8)^((11pi)/12) tanx dx#
#int_(pi/8)^((11pi)/12)cos^2xsinxdx - int_(pi/8)^((11pi)/12) sinx/cosx dx#
Let
#int_(cos(pi/8))^(cos((11pi)/12)) u^2sinx * (du)/(-sinx) - int_(cos(pi/8))^(cos((11pi)/12)) sinx/u * (du)/(-sinx)#
#int_(cos(pi/8))^(cos((11pi)/12)) u^2 du - int_(cos(pi/8))^(cos((11pi)/12)) 1/u du#
These are two trivial integrals.
#[1/3u^3]_(cos(pi/8))^(cos((11pi)/12)) - [ln|u|]_cos(pi/8)^(cos((11pi)/12)) #
#[1/3cos^3x]_(cos(pi/8))^(cos((11pi)/12)) - [ln|cosx|]_cos(pi/8)^(cos((11pi)/12)#
This can be evaluated using the second fundamental theorem of calculus as
#0.60777#
Hopefully this helps!