How do you use partial fractions to find the integral #int (x^2-1)/(x^3+x)dx#?
1 Answer
Feb 28, 2017
Explanation:
Start by factoring the denominator.
#x^3 + x = x(x^2 + 1)#
Now write the partial fraction decomposition.
#(Ax + B)/(x^2 + 1) + C/x = (x^2 - 1)/(x(x^2 + 1))#
#(Ax + B)x + C(x^2 + 1) = x^2 - 1#
#Ax^2 + Bx + Cx^2 + C = x^2 - 1#
#(A + C)x^2 + Bx + C = x^2 - 1#
We now write a system of equations.
#{(A + C = 1), (B = 0), (C = -1):}#
Solving, we get
#int(2x)/(x^2 + 1) - 1/xdx#
#int (2x)/(x^2 + 1)dx - int 1/xdx#
We now make the substitution
#int (2x)/u * (du)/(2x) - int 1/xdx#
#int 1/u du - int 1/x dx#
#ln|u| - ln|x| + C#
#ln|x^2 + 1| - ln|x| + C#
#ln|(x^2 + 1)/x|+ C#
Hopefully this helps!