How do you find the radius of convergence #Sigma 3^nx^(2n)# from #n=[1,oo)#?
1 Answer
Explanation:
#sum_(n=1)^oo3^nx^(2n)#
Recall that the series
We can take
#lim_(nrarroo)abs(a_(n+1)/a_n)=lim_(nrarroo)abs((3^(n+1)x^(2(n+1)))/(3^nx^(2n)))<1#
#color(white)(lim_(nrarroo)abs(a_(n+1)/a_n)=)lim_(nrarroo)abs((3^(n+1)x^(2n+2))/(3^nx^(2n)))<1#
#color(white)(lim_(nrarroo)abs(a_(n+1)/a_n)=)lim_(nrarroo)abs(3x^2)<1#
#color(white)(lim_(nrarroo)abs(a_(n+1)/a_n)=)3x^2-1<0#
#color(white)(lim_(nrarroo)abs(a_(n+1)/a_n)=)(sqrt3x+1)(sqrt3x-1)<0#
This is true on
Since this is the interval of convergence (for this problem we don't need to check the bounds), we see that the radius of convergence