Question #cf786

1 Answer
Mar 2, 2017

see below

Explanation:

Use the following Properties:

  1. Pythagorean Properties

    #1+cot^2 x = csc^2 x#

    #1+tan^2x=sec^2x#

    #cos^2x+sin^2x=1#

  2. Reciprocal Properties
    #csc x = 1/sinx #

    #sec x = 1/cos x#

Left hand Side :

#(1-cotx)^2 + (1-tan x)^2=1-2cotx+cot^2x+1-2tan^2x+tan^2x#

#=1+cot^2x-2cotx-2tanx+1+tan^2x#

#=csc^2x-2(cotx+tanx)+sec^2x#

#=csc^2x-2(cosx/sinx+sinx/cosx)+sec^2x#

#=csc^2x-2((cos^2x+sin^2x)/(sinx cosx))+sec^2x#

#=csc^2x-2(1/(sinx cosx))+sec^2x#

#=csc^2x-2(1/sinx 1/cosx)+sec^2x#

#=csc^2x-2 1/sinx 1/cosx+sec^2x#

#=csc^2x-2 cscx sec x+sec^2x#---> factor

#=(cscx-secx)(cscx-secx)#

#=(cscx-secx)^2#

#:.=# Right Hand Side