Question #cbef0

1 Answer
Mar 3, 2017

#Cos(2θ) + 34 sin2 θ = 25#

#=>1/sqrt(1^2+34^2)Cos(2θ) + 34/sqrt(1^2+34^2) sin2 θ = 25/sqrt(1^2+34^2)#

Let

#cosalpha=1/sqrt(1^2+34^2) #

#sinalpha=34/sqrt(1^2+34^2) #

and
#cos phi =25/sqrt(1^2+34^2)=> phi=cos^-1(25/sqrt(1^2+34^2)) =0.24pi#

So # tanalpha=34=>alpha = tan^-1(34)=0.49pi#

The given equation becomes

#cos2thetacosalpha+sin2thetasinalpha=coa phi#

#=>cos(2theta-alpha)=cosphi#

#=>cos(2theta-0.49pi)=cos(0.24pi)=cos (2pi-0.24pi)#
so
#=>2theta=(0.24+0.49)pi#
#=>theta=(0..365)pi#

Again

#=>2theta=(2-0.24+0.49)pi#

#=>theta=1.125pi#

Further taking

#cos(2theta-0.49pi)=cos(0.24pi)=cos (2pi+0.24pi)#

#=>2theta=(2+0.24+0.49)pi#

#=>theta=1.365pi#