How do you evaluate #\frac { 4} { ( x - 3) ^ { 2} } - \frac { 3} { x - 3}#?

1 Answer
Mar 4, 2017

#-(3x-13)/((x-3)^2)#

Explanation:

Given the expression:
#color(white)("XX")4/((x-3)^2) - 3/(x-3)#
(and assuming that #x!=3# for these terms to be meaningful)

We can modify #3/(x-3)# to have the same denominator as #4/((x-3)^2)#:
#color(white)("XX")3/(x-3)xx(x-3)/(x-3)=(3x-9)/((x-3)^2)#

Therefore
#color(white)("XX")4/((x-3)^2)-3/(x-3)#

#color(white)("XXXXXXXXXXXX")=(4-(3x-9))/((x-3)^2)#

#color(white)("XXXXXXXXXXXX")=(-3x+13)/((x-3)^2)#