What is #f(x) = int -9x+5sqrt(x^2+1) dx# if #f(2) = 7 #?
1 Answer
Explanation:
Separate the integrals.
#f(x) = int -9xdx + int 5sqrt(x^2 +1)dx#
The first integral is easy, we can do this using
Since
#5int sqrt(x^2 + 1)dx = 5int sqrt((tan theta)^2 + 1) * sec^2theta d theta#
#5int sqrt(x^2 + 1)dx = 5int sqrt(sec^2theta) * sec^2theta d theta#
#5int sqrt(x^2 + 1)dx = 5int sec^3theta d theta#
This is a known integral that can be found here.
#5intsqrt(x^2 +1)dx = 5(1/2secxtanx + 1/2ln|secx + tanx|)#
#5intsqrt(x^2 + 1)dx = 5/2secxtanx + 5/2ln|secx + tanx|#
We now put all of this together and add the constant of integration.
#f(x) = -9/2x^2 + 5/2secxtanx +5/2ln|secx + tanx| + C#
We now solve for
#7 = -9/2(2)^2 + 5/2sec(2)tan(2) + 5/2ln|sec2 + tan2| + C#
Using a calculator, we get an approximation of
Hopefully this helps!