How do you evaluate the limit #tan(3x)/(3tan2x)# as x approaches #0#?
2 Answers
Explanation:
Let us first find
=
=
Hence
=
=
=
Explanation:
Use
#lim_(xrarr0)tan(3x)/(3tan(2x))=lim_(xrarr0)((tan(2x)+tan(x))/(1-tan(2x)tan(x)))/(3tan(2x))#
#=lim_(xrarr0)(tan(2x)+tan(x))/(3tan(2x)(1-tan(x)tan(2x)))#
Now using
#=lim_(xrarr0)((2tan(x))/(1-tan^2(x))+tan(x))/(3(2tan(x))/(1-tan^2(x))(1-tan(x)(2tan(x))/(1-tan^2(x))))#
Multiplying through by
#=lim_(xrarr0)(2tan(x)+tan(x)(1-tan^2(x)))/(6tan(x)(1-(2tan^2(x))/(1-tan^2(x)))#
Factoring
#=lim_(xrarr0)(tan(x)(2+1-tan^2(x)))/(6tan(x)(1-(2tan^2(x))/(1-tan^2(x)))#
#=lim_(xrarr0)(2+1-tan^2(x))/(6(1-(2tan^2(x))/(1-tan^2(x)))#
Now we can plug in
#=(2+1-0)/(6(1-(2(0))/(1-0)))=3/6=1/2#