How do we write #(1/2)^(2+i)# as a complex number?

1 Answer
Mar 10, 2017

#(1/2)^(2+i)=(1/2)^2[cos(ln(1/2))+isin(ln(1/2))]#

Explanation:

Let us first explore the value of a real number #x# raised to a complex number, e.g. #a+ib#. To do this let us convert the number to its polar form say #r(costheta+isintheta)#.

Recall, we can write #r(costheta+isintheta)# as #re^(itheta)#. Also recall #e^x=1+x+x^2/(2!)+x^3/(3!)+x^4/(4!)+x^5/(5!)+...................#

Hence, #x^((a+ib))# can be written as #x^(re^(itheta))#

Also recall that #x=e^(lnx)#

Hence #x^(a+bi)=e^(lnx(a+bi))=e^(alnx+i(blnx)#

#=e^(alnx)e^(i(blnx)#

#=x^a(cos(blnx)+isin(blnx))#

Coming to #(1/2)^(2+i)# here #x=1/2#, #a=2# and #b=1# hence

#(1/2)^(2+i)=(1/2)^2[cos(ln(1/2))+isin(ln(1/2))]#