Question #82a63

3 Answers
Mar 10, 2017

#" The Soln. Set="{2kpi+2arc tan2 : k in ZZ}.#

Explanation:

Knowing that, #sinx=2sin(x/2)cos(x/2), &, 1+cosx=2cos^2(x/2)#, we have,

#sinx/(1+cosx)=2.#

#rArr {2sin(x/2)cos(x/2)}/(2cos^2(x/2))=2.#

# rArr tan(x/2)=2, .............[if, cos(x/2)ne0,}#

#rArr tan(x/2)=tan(arc tan2)#

#rArr x/2=kpi+arc tan 2, k inn ZZ#.

#rArr x=2kpi+2arc tan2, k in ZZ.#

Considering the constraint #cos(x/2) ne0#, we observe that,

#cos(x/2)=0 rArr 1+cosx=2cos^2(x/2)=0,# & so, the eqn.

becomes meaningless. #:. cos(x/2)!=0.#

#:." The Soln. Set="{2kpi+2arc tan2 : k in ZZ}.#

The Other eqn., # : sinx/(1-cosx)=2,# can similarly be dealt with.

Enjoy maths.!

Mar 11, 2017

#127^@59; 179^@27#

Explanation:

sin x = 2 + 2cos x
sin x - 2cos x = 2 ( 1 )
Call #tan t = sin t/(cos t) = 2# --># t = 63^@43#
Equation (1) -->
#sin x - (sin t)/(cos t)cos x = 2cos x = 2(0.45) = 0.90#
sin (x - t) = sin (x - 63.43) = 0.90
Calculator and unit circle give -->2 solutions

a. #(x - 63.43) = 64^@16#
# x = 64.16 + 63.43 = 127^@59#

b. #x - 63.43 = 180 - 64.16 = 115^@84#
#x = 115.84 + 63.43 = 179^@27#

Mar 12, 2017

#127^@59; 179.27#

Explanation:

sin x = 2 + 2cos x
sin x - 2cos x = 2
Call #tan t = sin t/(cos t) = 2# --> #t = 63^@43# --> cos t = 0.45
#sin x - (sin t/cos t)cos x = 2#
#sin x.cos t - sin t.cos x = 2cos t#
#sin (x - t) = 2cos t = 0.90# .
Calculator and unit circle give 2 solutions:
a. (x - t) = (x - 63.43) = 64.16 -->
#x = 63.43 + 64.16 = 127@59#
b. (x - 63.43) = 180 - 64.16 = 115.84
#x = 115.84 + 63.43 = 179^@27#
Answers for (0, 360):
#127^@59; 179^@27#
Check by calculator:
x = 127.59 --> sin x = 0.78 --> cos x = - 0.61
sin x - 2cos x = 0.78 + 1.22 = 2. OK
x = 179.27 --> sin x = 0.01 --> cos x = - 0.995 -->
sin x - 2cos x = 0.01 + 1.99 = 2. OK