Question #78f22

1 Answer
Mar 11, 2017

#4^@09; 122^@77#

Explanation:

#cos x + 2sin x = pi/3#
Call #tan t = (sin t)/(cos t) = 2# --> #t = 63^@43 #--> #cos t = 0.45#
The equation becomes:
#cos x + (sin t)/(cos t)sin x = pi/3#
#cos x.cos t + sin t.sin x = (pi/3)cos t = (3.41)(0.45)/3 = 0.51#
Using trig identity: cos (a - b) = cos a.cos b + sin a.sin b, we get:
cos (x - t) = cos (x - 63.43) = 0.51
Calculator and unit circle give:
#x - 63.43 = +- 59^@34# --> 2 solutions --
#x = 63.43 + 59.34 = 122^@77#
#x = 63.43 - 59.34 = 4^@09#
Check by calculator:
x = 122.77 --> cos x = -0.54 --> 2sin x = 1.68
#cos x + 2sin x = -0.54 + 1.68 = 1.141 = pi/3 = 3.414/3.# OK
x = 4.09 --> cos x = 0.99 --> 2sin x = 0.14
#cos x = 2sin x = 0.99 + 0.14 = 1.14 = pi/3.# OK