How do you find the derivative of #(x^2-4)/(x-1)#?
1 Answer
Mar 12, 2017
Explanation:
I would simplify the expression first, then use the power rule...
#d/(dx) ((x^2-4)/(x-1)) = d/(dx) ((x^2-x+x-1-3)/(x-1))#
#color(white)(d/(dx) ((x^2-4)/(x-1))) = d/(dx) (((x+1)(x-1)-3)/(x-1))#
#color(white)(d/(dx) ((x^2-4)/(x-1))) = d/(dx) ((x+1)-3/(x-1))#
#color(white)(d/(dx) ((x^2-4)/(x-1))) = d/(dx) (x+1-3(x-1)^(-1))#
#color(white)(d/(dx) ((x^2-4)/(x-1))) = 1+0+3(x-1)^(-2)#
#color(white)(d/(dx) ((x^2-4)/(x-1))) = 1+3/(x-1)^2#
Note: I did use the chain rule quietly above too, when differentiating:
#(x-1)^(-1)#
to get:
#-1(x-1)^(-2)*d/(dx)(x-1) = -(x-1)^(-2)#