How do you test the series #Sigma 1/(nlnn)# from n is #[2,oo)# for convergence?
1 Answer
Mar 12, 2017
Explanation:
Note that:
#d/(dx) ln x = 1/x#
So:
#d/(dx) ln(ln x) = 1/(ln x) * d/(dx) ln x#
#color(white)(d/(dx) ln(ln x)) = 1/(ln x) * 1/x#
#color(white)(d/(dx) ln(ln x)) = 1/(x ln x)#
So:
#int 1/(x ln x) dx = ln(ln x) + C#
Then:
#lim_(x->oo) ln(ln x) = oo#
So by the integral test:
#sum_(n=2)^oo 1/(n ln n)" "# diverges.