Question #2250e

1 Answer
Mar 13, 2017

#1/2"arcsec"^2(x)+C#

Explanation:

#I=int("arcsec"(x))/(xsqrt(x^2-1))dx#

Let #x=sectheta#. This implies that #dx=secthetatanthetad theta#. Also it means that #theta="arcsec"(x)#. Then:

#I=inttheta/(secthetasqrt(sec^2theta-1))(secthetatanthetad theta)#

Note that #sec^2theta-1=tan^2theta#:

#I=inttheta/(secthetatantheta)(secthetatantheta)d theta#

#I=intthetacolor(white).d theta#

#I=1/2theta^2+C#

#I=1/2"arcsec"^2(x)+C#