What is the arc length of #f(x)=-xln(1/x)-xlnx# on #x in [3,5]#?
1 Answer
Mar 13, 2017
Explanation:
Use the rule
#f(x)=-xln(x^-1)-xln(x)#
Bringing the
#f(x)=xln(x)-xln(x)#
#f(x)=0#
This is the straight line
Using
#L=int_a^bsqrt(1+(f'(x))^2)dx#
#L=int_2^4sqrt(1+0)dx#
#L=int_2^4dx#
#L=x]_2^4#
#L=2#