How do you find #f^5(0)# where #f(x)=x/(1+x^2)#?
1 Answer
Mar 14, 2017
Explanation:
We can first construct the Maclaurin series for the function:
#1/(1-x)=sum_(n=0)^oox^n#
Replacing
#1/(1+x^2)=sum_(n=0)^oo(-x^2)^n=sum_(n=0)^oo(-1)^nx^(2n)#
Multiplying by
#x/(1+x^2)=xsum_(n=0)^oo(-1)^nx^(2n)=sum_(n=0)^oo(-1)^nx^(2n+1)#
We can write out the first terms of the Maclaurin series:
#x/(1+x^2)=x-x^3+x^5-x^7+x^9+...#
A general Maclaurin series is given by:
#f(x)=sum_(n=0)^oo(f^((n))(0))/(n!)x^n#
When
In the Maclaurin series for
#x^5=f^((5))(0)/(5!)x^5#
And:
#f^((5))(0)=5! =120#