Question #62f68

1 Answer
Mar 15, 2017

see explanation below

Explanation:

Let we take RHS to prove LHS

#(1 -sin 2 x)/ cos (2 x) = (sin^2 x + cos ^2 x - 2sin x cos x)/(cos^2 x -sin^2 x)#

# = (sin x - cos x)^2/((cos x - sin x)(cos x + sin x))#

# = (sin x - cos x)^2/(-(-cos x + sin x)(cos x + sin x))#

# =- (sin x - cos x)^cancel 2/(cancel(( sin x - cos x))(cos x + sin x))#

# =- (sin x - cos x)/(cos x + sin x) = (cos x - sin x)/(cos x + sin x)#

divided by #sin x#

#(cos x/sin x - sin x/sin x)/(cos x/sin x + sin x/sin x) = (cost x - 1)/(cot x + 1)#