What is the derivative of # e^x/2^x #?

3 Answers
Mar 18, 2017

#(e/2)^x(1-ln 2)#

Explanation:

Use the quotient rule #(u/v)' = (v*u' - u*v')/v^2#
Let #u = e^x#, #u' = e^x#
Let #v = 2^x#, #v' = 2^x ln 2#

#(u/v)' = (2^x*e^x - e^x*2^x ln 2)/(2^x)^2 = ((2^xe^x)(1-ln 2))/(2^(2x))#

Simplify using exponent rules #x^m/x^(2m) = 1/x^(2m-m) = 1/x^m#:

#((2^xe^x)(1-ln 2))/(2^(2x)) = (e^x(1-ln 2))/ 2^x = (e/2)^x(1-ln 2)#

Mar 19, 2017

# d/dx e^x/2^x = (1 - ln2)e^x/2^x #

Explanation:

Let # y = e^x/2^x #

Then take (Natural) logarithms of both sides; and use the rules of logs:

# :. ln y = ln {e^x/2^x} #
# " " = ln (e^x) - ln(2^x) #
# " " = xln (e) - xln(2) #
# " " = x - xln(2) #
# " " = x(1 - ln(2)) #

Now, differentiate implicitly:

# 1/ydy/dx \ = (1 - ln2) #
# :. dy/dx = (1 - ln2)y #
# " " = (1 - ln2)e^x/2^x #

Mar 23, 2017

#(e/2)^x(1-ln2)#

Explanation:

#e^x/2^x = (e/2)^x#

The derivative of #a^x# with respect to #x# for any number #a# is:

#d/dxa^x=a^xln(a)#

Therefore:

#d/dx(e/2)^x = (e/2)^xln(e/2)#

#color(white)"XXXXX-" = (e/2)^x(lne-ln2)#
#color(white)"XXXXX-" = (e/2)^x(1-ln2)#

Final Answer