How do you simplify #33/sqrt99#?
2 Answers
Mar 19, 2017
Explanation:
#sqrt99=sqrt(9xx11)=sqrt9xxsqrt11=3sqrt11#
#rArr(33)/(sqrt99)=cancel(33)^(11)/(cancel(3)^1sqrt11)=11/sqrt11#
#color(blue)" Rationalising the denominator"#
#rArr11/sqrt11xxsqrt11/sqrt11#
#=(cancel(11)^1sqrt11)/cancel(11)^1#
#=sqrt11#
Mar 19, 2017
We can also do this in one fell swoop using prime factorization: