Is there a certain formula for derivatives?
1 Answer
Yes, but not just one formula. There are many.
The derivative (of a differentiable function),
f'(a) = lim_(x rarr a )(f(x)-f(a))/(x-a)
With a slight change of notation we can write:
dy/dx = f'(x) = lim_(h rarr 0 ) (f(x+h)-f(x))/h
In some older texts the notation may involve
f'(x) = lim_(deltax rarr 0 ) (f(x+deltax)-f(x))/(deltax) = lim_(Deltaxrarr 0 ) (f(x+Deltax)-f(x))/(Deltax)
It represents both the rate of change of the function, and the gradient of the tangent line at any particular point. If the limit does not exists then the function is not differentiable.
In practice we do not derive the derivative from first principles using the limit definition, but instead we use various rules that can be proved to be true;
Power Rule:
d/dx(x^n) = nx^(n - 1)
Example: Find
We have
Chain Rule:
d/dx(f(g(x)) = f'(g(x)) * g'(x) , in other words the derivative of the compositionf(g(x)) is the inner function times the outer function.
Example: Find
We let
Product Rule:
d/dx(f(x) xx g(x)) = f'(x)g(x) + f(x)g'(x)
Example: Find
We let
Quotient rule:
d/dx((f(x))/(g(x)))=(g(x)f'(x)-f(x)g'(x))/(g(x))^2
Example: Find
We let
Here are a few other useful derivative formulas I think you should know.
d/dx(lnx) = 1/x
d/dx(sinx) = cosx
d/dx(cosx) = -sinx
Once you get good at the basic differentiation rules, you may be asked to solve problems that combine the differentiation rules in interesting ways.
Example: Find
First of all, note that
There are a few ways of differentiating this.
a) you could use the quotient rule to differentiate
1/cosx and then the chain rule to differentiatey .b) you could rewrite
1/cosx as(cosx)^-1 and then differentiate using the chain rule twice.c) you could use the laws of logarithms to simplify and then differentiate. I'll use this method.
By the rule
By the chain rule, we have
dy/dx = -1/cosx * -sinx = sinx/cosx = tanx
Hopefully you now get a good idea what differentiation is about!