How do you find the equation of a line normal to the function #y=(x^2-1)/(2x+3)# at x=-1?

1 Answer
Mar 23, 2017

Use the quotient rule to find #y'(x)#
The slope of the tangent line is #m = -1/(y'(-1))#
Find the y coordinate, #y_0 = y(-1)#
Use the point slope form on the equation of a line #y = m(x--1)+y_0#

Explanation:

Use the quotient rule to find #y'(x)#

#y'(x) = ((u(x))/(g(x)))' = (u'(x)g(x)-u(x)g'(x))/(g(x))^2#

let #u(x) = x^2+1 and g(x)=2x+3#, then #u'(x) =2x and g'(x)=2#

#y'(x) = ((2x)(2x+3)-2(x^2+1))/(2x+3)^2#

#y'(x) = (4x^2+6x-2x^2+2)/(2x+3)^2#

#y'(x) = (2x^2+6x+2)/(2x+3)^2#

The slope of the tangent line is:

#m = -1/y'(-1)

#m = -(2(-1)+3)^2/((2(-1)^2+6(-1)+2)#

#m = 1/2#

Find the y coordinate, #y_0 = y(-1)#

#y_0 = (-1^2+1)/(2(-1)+3)#

#y_0 = 0#

Use the point slope form on the equation of a line #y = m(x--1)+k#

#y = 1/2(x--1)#