Find the value of sin(cos^(-1)(3/4)-tan^(-1(1/4)))sin(cos1(34)tan1(14))?

2 Answers
Mar 24, 2017

sin(cos^(-1)(3/4)-tan^(-1)(1/4))=(4sqrt7-3)/(4sqrt17)sin(cos1(34)tan1(14))=473417

Explanation:

Let cos^(-1)(3/4)=alphacos1(34)=α, then cosalpha=3/4cosα=34

and sinalpha=sqrt(1-cos^2alpha)sinα=1cos2α

= sqrt(1-9/16)=sqrt7/41916=74

let tan^(-1)(1/4)=betatan1(14)=β then we have tanbeta=1/4tanβ=14

and cosbeta=1/secbeta=1/sqrt(1+tan^2beta)=1/sqrt(1+1/16)=4/sqrt17cosβ=1secβ=11+tan2β=11+116=417

and sinbeta=tanbetaxxcosbeta=1/4xx4/sqrt17=1/sqrt17sinβ=tanβ×cosβ=14×417=117

Hence sin(cos^(-1)(3/4)-tan^(-1)(1/4))sin(cos1(34)tan1(14))

= sin(alpha-beta)=sinalphacosbeta-cosalphasinbetasin(αβ)=sinαcosβcosαsinβ

= sqrt7/4xx4/sqrt17-3/4xx1/sqrt1774×41734×117

= (4sqrt7-3)/(4sqrt17)473417

Mar 24, 2017

(sqrt17(4sqrt7-3))/(68)17(473)68

Explanation:

The given expression
sin (cos^-1(3/4) - tan^-1(1/4))sin(cos1(34)tan1(14))
looks like sin (A-B)sin(AB)
We also know that
sin(A-B)=sinAcosB-cosAsinBsin(AB)=sinAcosBcosAsinB ....(1)
where
A=cos^-1(3/4) A=cos1(34) .....(2)
and
B= tan^-1(1/4)B=tan1(14) ......(3)

To calculate sin A and cos AsinAandcosA we make use of (2)
From (2)
cos A=cos [cos^-1(3/4)] cosA=cos[cos1(34)]
cos A=3/4 cosA=34 .....(4)
Using the identity
sin^2A+cos^2A=1sin2A+cos2A=1
sinA=sqrt(1-cos^2A)sinA=1cos2A
=>sinA=sqrt(1-(3/4)^2)sinA=1(34)2
=>sinA=sqrt(1-9/16)sinA=1916
=>sinA=sqrt7/4sinA=74 ......(5)

To calculate sin B and cos BsinBandcosB we make use of (3)
From (3)
tanB= tan[tan^-1(1/4)]tanB=tan[tan1(14)]
=>tanB= 1/4tanB=14 .....(6)
we know that
cosB=1/(secB)cosB=1secB
=>cosB=1/sqrt(1+tan^2B)cosB=11+tan2B
Inserting value of tanBtanB we get
=>cosB=1/sqrt(1+(1/4)^2)cosB=11+(14)2
=>cosB=1/sqrt(1+1/16)cosB=11+116
=>cosB=4/sqrt(17)cosB=417 ......(7)

We know that
sinB=tanBxxcosBsinB=tanB×cosB
Using (6) and (7) we get
sinB=1/4xx4/sqrt17sinB=14×417
sinB=1/sqrt17sinB=117 .....(8)

Inserting calculated values in (1) we get
sin(A-B)=sqrt7/4xx4/sqrt17-3/4xx1/sqrt17sin(AB)=74×41734×117
sin(A-B)=(4sqrt7-3)/(4sqrt17)sin(AB)=473417
Rationalizing the denominator we get
sin(A-B)=(sqrt17(4sqrt7-3))/(68)sin(AB)=17(473)68

.-.-.-.-.-.-.-.-.-.-

Alternatively after (4)
In a right angled triangle
cosA=3/4-="base"/"hypotenuse"cosA=34basehypotenuse
and
"perpendicular"=sqrt("hypotenuse"^2-"base"^2)perpendicular=hypotenuse2base2
:. "perpendicular"=sqrt(4^2-3^2)
=> "perpendicular"=sqrt(7)
This gives us
sinA-="perpendicular"/"hypotenuse"=sqrt7/4
This is same as (5)

Similar steps can be followed after (6) to calculate sinB and cos B that tanB=1/4-="perpendicular"/"base"
and
"hypotenuse"=sqrt("perpendicular"^2+"base"^2)