The given expression
sin (cos^-1(3/4) - tan^-1(1/4))sin(cos−1(34)−tan−1(14))
looks like sin (A-B)sin(A−B)
We also know that
sin(A-B)=sinAcosB-cosAsinBsin(A−B)=sinAcosB−cosAsinB ....(1)
where
A=cos^-1(3/4) A=cos−1(34) .....(2)
and
B= tan^-1(1/4)B=tan−1(14) ......(3)
To calculate sin A and cos AsinAandcosA we make use of (2)
From (2)
cos A=cos [cos^-1(3/4)] cosA=cos[cos−1(34)]
cos A=3/4 cosA=34 .....(4)
Using the identity
sin^2A+cos^2A=1sin2A+cos2A=1
sinA=sqrt(1-cos^2A)sinA=√1−cos2A
=>sinA=sqrt(1-(3/4)^2)⇒sinA=√1−(34)2
=>sinA=sqrt(1-9/16)⇒sinA=√1−916
=>sinA=sqrt7/4⇒sinA=√74 ......(5)
To calculate sin B and cos BsinBandcosB we make use of (3)
From (3)
tanB= tan[tan^-1(1/4)]tanB=tan[tan−1(14)]
=>tanB= 1/4⇒tanB=14 .....(6)
we know that
cosB=1/(secB)cosB=1secB
=>cosB=1/sqrt(1+tan^2B)⇒cosB=1√1+tan2B
Inserting value of tanBtanB we get
=>cosB=1/sqrt(1+(1/4)^2)⇒cosB=1√1+(14)2
=>cosB=1/sqrt(1+1/16)⇒cosB=1√1+116
=>cosB=4/sqrt(17)⇒cosB=4√17 ......(7)
We know that
sinB=tanBxxcosBsinB=tanB×cosB
Using (6) and (7) we get
sinB=1/4xx4/sqrt17sinB=14×4√17
sinB=1/sqrt17sinB=1√17 .....(8)
Inserting calculated values in (1) we get
sin(A-B)=sqrt7/4xx4/sqrt17-3/4xx1/sqrt17sin(A−B)=√74×4√17−34×1√17
sin(A-B)=(4sqrt7-3)/(4sqrt17)sin(A−B)=4√7−34√17
Rationalizing the denominator we get
sin(A-B)=(sqrt17(4sqrt7-3))/(68)sin(A−B)=√17(4√7−3)68
.-.-.-.-.-.-.-.-.-.-
Alternatively after (4)
In a right angled triangle
cosA=3/4-="base"/"hypotenuse"cosA=34≡basehypotenuse
and
"perpendicular"=sqrt("hypotenuse"^2-"base"^2)perpendicular=√hypotenuse2−base2
:. "perpendicular"=sqrt(4^2-3^2)
=> "perpendicular"=sqrt(7)
This gives us
sinA-="perpendicular"/"hypotenuse"=sqrt7/4
This is same as (5)
Similar steps can be followed after (6) to calculate sinB and cos B that tanB=1/4-="perpendicular"/"base"
and
"hypotenuse"=sqrt("perpendicular"^2+"base"^2)