How do you simplify #(2sqrt27)times(3 sqrt32)#?
3 Answers
Explanation:
Explanation:
Using the
#color(blue)"law of radicals"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(sqrt(ab)hArrsqrtaxxsqrtb)color(white)(2/2)|)))# To simplify the radicals consider the product of their factors of which one should be a
#color(blue)"perfect square"#
#rArrsqrt27=sqrt(color(red)(9)xx3)=sqrtcolor(red)(9)xxsqrt3=3sqrt3#
#rArrsqrt32=sqrt(color(red)(16)xx2)=sqrtcolor(red)(16)xxsqrt2=4sqrt2#
#rArr2sqrt27xx3sqrt32#
#=2xx(3xxsqrt3)xx3xx(4xxsqrt2)#
#=(2xx3xx3xx4)xx(sqrt3xxsqrt2)#
#=72sqrt(3xx2)=72sqrt6#