Question #ac65e

1 Answer
Mar 26, 2017

#26.5%#, rounded to one decimal place

Explanation:

Let initial velocity be #v_i#, Kinetic energy would be #=1/2mv_i^2#
Given final Kinetic energy #=1/2mv_i^2xx(1+60%)#
#=># final Kinetic energy #=1/2mv_i^2xx1.60#
If final velocity is #v_f#, comparing with final kinetic energy#=1/2mv_f^2#
#1/2mv_f^2=1/2mv_i^2xx1.60#
#=>v_f=sqrt1.6v_i# .........(1)

Increase in momentum #="Final Momentum"-"Inital Momentum"#
Increase in momentum #=mv_f-mv_i#
% Increase in momentum #=(mv_f-mv_i)/(mv_i)xx100#

Using equation (1) we get
% Increase in momentum #=(msqrt1.6v_i-mv_i)/(mv_i)xx100#
#=># % Increase in momentum #=(sqrt1.6-1)xx100#
#=># % Increase in momentum #=26.5#, rounded to one decimal place