How do you simplify #\frac { 1} { \sin x + 1} + \frac { 1} { \sin x - 1}#?

2 Answers
Mar 26, 2017

#(2sinx)/(sin^2x-1)#

Explanation:

First get a common denominator by multiplying the first term by #1# in the form of #(sinx-1)/(sinx-1)# and the second in the form of #(sinx+1)/(sinx+1)#

#(1(sinx-1))/((sinx+1)(sinx-1))+(1(sinx+1))/((sinx-1)(sinx+1))#

Multiply out

#(sinx-1)/(sin^2x-1)+(sinx+1)/(sin^2x-1)#

And combine

#(sinx-1+sinx+1)/(sin^2x-1)#

Combine like terms

#(2sinx)/(sin^2x-1)#

And you're done!

Mar 27, 2017
  • 2 tan x.sec x

Explanation:

Put the 2 fractions having common denominator
#f(x) = (2sin x)/(sin^2 x - 1) = (2sin x)/-(1 - sin^2 x) = - (2sin x)/cos^2 x =#
#f(x) = - 2tan x(1/cos x) = - 2tan x.sec x#