How do you find the product of #(w+4)(w^2+3w-6)#?

1 Answer
Mar 27, 2017

#(w+4)(w^2+3w-6)=w^3+7w^2+6w-24#

Explanation:

We use distributive property i.e. multiplying #(w^2+3w-6)# first by #w# and then by #4# and then adding the two.

#(w+4)(w^2+3w-6)#

= #w(w^2+3w-6)+4(w^2+3w-6)#

= #wxxw^2+wxx3w-wxx6+4xxw^2+4xx3w-4xx6#

= #w^3+3w^2-6w+4w^2+12w-24#

= #w^3+7w^2+6w-24#