How do you solve the triangle given ∠C = 68°, ∠B = 24°, b = 11?

1 Answer
Mar 28, 2017

#/_A=88°, a= 27,c=25#

Explanation:

First draw a triangle then find #/_A#. The diagram will enable you to know exactly what you are ealing with.

#/_A+/_B+/_C=180°#

#/_A=180°-/_B-/_C#

#/_A= 180°-24°-68°#

#/_A=88°#

Now that we have #/_A#, we can use the law of sine to find a which is the length opposite #/_A#.

#(sinA)/a=(sinB)/b#

#a*sinB=b*sinA#

#(a*cancel(sinB))/cancelsinB=(b*sinA)/sinB#

#a=(11*sin88°)/(sin24°)#

#a=27#

Now use the sine rule again to colve for #c#

#(sin C)/c=(sinB)/b#

#c=(b*sinC)/sinB#

#c=(11*sin68°)/sin24°#

#c=25#