#p(x)=3x^2-x^2+2x-5#, what is #p(x)# when #x=-2# and #x=3#?
2 Answers
Explanation:
To evaluate p( -2 ) and p( 3 ) substitute x = - 2 and x = 3
into p( x )
#rArrp(color(red)(-2))=3(color(red)(-2))^3-(color(red)(-2))^2+2(color(red)(-2))-5#
#color(white)(rArrp(-2))=(3xx-8)-(+4)+(2xx-2)-5#
#color(white)(rArrp(-2))=-24-4-4-5#
#color(white)(rArrp(-2))=-37#
#rArrp(color(magenta)(3))=3(color(magenta)(3))^3-(color(magenta)(3))^2+2(color(magenta)(3))-5#
#color(white)(rArrp(3))=(3xx27)-9+6-5#
#color(white)(rArrp(3))=81-9+6-5#
#color(white)(rArrp(3))=73#
Explanation:
This is an function, which means that all values of
When
When