Question #0860e

2 Answers
Mar 29, 2017

Refer to The Explanation.

Explanation:

Recall that, #sin^2x+cos^2x=1, and, tan^2x=1/cot^2x.#

Hence,#" the L.H.S.="(1+cot^2x)/{1+1/cot^2x},#

#=(1+cot^2x)/{(1+cot^2x)/cot^2x},#

#=(cancel(1+cot^2x)){cot^2x/(cancel(1+cot^2x))},#

#=cot^2x,#

#"=the R.H.S."#

Mar 29, 2017

#"LS"=frac{sin^2x+cos^2x+cot^2x}{1+tan^2x}#

#=frac{1+cot^2x}{1+tan^2x}#

Since #color(red)(sin^2a+cos^2a=1),# (Pythagorean identity) dividing by #sin^2a# gives another identity #color(red)(1+cot^2a=csc^2a=1/sin^2a)#, and dividing the Pythagorean identity by #cos^2a# gives #color(red)(tan^2a+1=sec^2a=1/cos^2a)#.

#"LS"=frac{(1/sin^2x)}{(1/cos^2x)}#

#=frac{cos^2x}{sin^2x}#

#=cot^2x#

#"QED"#