How do you evaluate #x^{2}-3x+7(4x+1(-2))#?

1 Answer
Mar 30, 2017

#x^2+25x-14#

Explanation:

If we're following the order of operations, we should first evaluate what's inside the parenthesis.

#x^2-3x+7(color(red)(4x+1(-2)))#

#x^2-3x+7(color(red)(4x-2))#

We can then distribute the #7# to #(4x-2)#

#x^2-3x+color(red)(7(4x-2))#

#x^2-3x+color(red)(28x-14)#

And finally, we can simply combine like terms:

#color(blue)(x^2)color(green)(-3x+28x)color(red)(-14)#

#color(blue)(x^2)color(green)(+25x)color(red)(-14)#