How do you simplify #(3x)/4-(5x)/6#?

2 Answers
Mar 30, 2017

#(3x)/4-(5x)/6=-x/12#

Explanation:

#(3x)/4-(5x)/6#

#color(red)(3/3)*(3x)/4-color(blue)(*2/2)(5x)/6#

#(9x)/12-(10x)/12#

#(9x-10x)/12#

#-x/12#

Mar 30, 2017

#-x/12#

Explanation:

Before subtracting the fractions we require them to have a #color(blue)"common denominator"#

Multiplying the numerator/denominator of #(3x)/4# by 6 and

#(5x)/6# by 4 will ensure this.

#((3x)/4xx6/6)-((5x)/6xx4/4)#

#=(18x)/24-(20x)/24#

Now there is a common denominator we can subtract the numerators leaving the denominator as it is.

#=(-2x)/24=-(cancel(2)^1 x)/cancel(24)^12=-x/12#