How do you find the intervals of increasing and decreasing given #y=-x^4+3x^2-3#?

1 Answer
Apr 1, 2017

The intervals of increasing are #x in (-oo,-1.225) uu (0,1.225)#.
The intervals of decreasing are #x in (-1.225,0) uu (1.225, +oo)#

Explanation:

We calculate the first derivative and build a chart.

#y=-x^4+3x^2-3#

#y'=-4x^3+6x#

We have, #y'=0# when

#-4x^3+6x=0#

#x(-4x^2+6)=0#

#x(6-4x^2)=0#

#x=0#,

and #x=+-sqrt(3/2)=+-1.225#

The chart is :

#color(white)(a)##I##color(white)(a)##(-oo,-1.225)##color(white)(a)##(-1.225,0)##color(white)(a)##(0,1.225)##color(white)(a)##(1.225, +oo)#

#color(white)(a)##y'##color(white)(aaaaaa)##+##color(white)(aaaaaaaaaaa)##-##color(white)(aaaaaaa)##+##color(white)(aaaaaaaa)##-#

#color(white)(a)##y##color(white)(aaaaaa)##↗##color(white)(aaaaaaaaaaa)##↘##color(white)(aaaaaaa)##↗##color(white)(aaaaaaaa)##↘#