Question #a263e

1 Answer
Apr 3, 2017

I'm going to assume you mean #cotthetasintheta=(1-sin^2theta)sectheta#, correct me if I'm wrong.

Explanation:

Working the right side, first use the Pythagorean identity #sin^2theta+cos^2theta=1# to know that #1-sin^2theta=cos^2theta#.
#(1-sin^2theta)sectheta=cos^2thetasectheta#.

Then, substitute #1/costheta# for #sectheta# and simplify.
#cos^2thetasectheta=cos^2theta/costheta=costheta#.

Then multiply by #1# in the form of #sintheta/sintheta#.
#costheta=(costhetasintheta)/sintheta#.

And substitute #cottheta# for #costheta/sintheta#.
#(costhetasintheta)/sintheta=cotthetasintheta#

Therefore, #(1-sin^2theta)sectheta=cotthetasintheta#
Q.E.D.