How do you differentiate #y=sqrt(2-e^x)#?

1 Answer
Apr 4, 2017

Use the chain rule:
#(d(f(g(x))))/dx = (df(g))/(dg)(d(g(x)))/dx#

Explanation:

Let #g(x) = 2 - e^x# then it follows that:

#(d(g(x)))/dx= -e^x#

#f(g) = sqrt(g)#

and

#(df(g))/(dg) = 1/(2sqrtg)#

Substituting this into the chain rule:

#(d(sqrt(2-e^x)))/dx =1/(2sqrtg)-e^x#

#(d(sqrt(2-e^x)))/dx =-e^x/(2sqrtg)#

Reverse the substitution for g:

#(d(sqrt(2-e^x)))/dx =-e^x/(2sqrt(2-e^x))#