Question #6ae3e

1 Answer
Apr 10, 2017

#f'(x)=4((x^3-1)/(2x^3+1))^3xx(9x^2)/((2x^3-1)^2)#

Explanation:

Assuming that your looking for the derivative of;
#f(x)=[(x^3-1)/(2x^3+1)]^4#
Let #u(x)=(x^3-1)/(2x^3+1)#

#therefore# #f=u^4#

and

#(df)/dx=(df)/(du)*(du)/(dx)# (chain rule)

Using quotient rule to differentiate #u(x)#
REMEMBER - Quotient Rule
#f(x)=u/v#
#f'(x)=(u'v-uv')/v^2#

#u'(x)=((3x^2)(2x^3+1)-(6x^2)(x^3-1))/((2x^3-1)^2)#
#u'(x)=((6x^5+3x^2)-(6x^5-6x^2))/((2x^3-1)^2)#
#u'(x)=(9x^2)/((2x^3-1)^2)#

and, as #f=u^4#, #f'=4u^3#

#therefore# #(df)/dx=(df)/(du)*(du)/(dx)=(4u^3)(9x^2)/((2x^3-1)^2)#
Substituting back in #u(x)=(x^3-1)/(2x^3+1)#
#f'(x)=4((x^3-1)/(2x^3+1))^3xx(9x^2)/((2x^3-1)^2)#

I cant imagine you would have to simplify this in an exam.

hope this helps :)