What is #sin^2 3x+cos^2 3x#?

2 Answers
Apr 11, 2017

Please see below.

Explanation:

#sin^2A+cos^2A=1# is an identity and is true for all #A#, including #A=3x# and hence

#sin^2 3x+cos^2 3x=1#

However, let us try is using values of #sin3x# and #cos3x#.

But before this as #sin^2x+cos^2x=1#, squaring it

#sin^4x+cos^4x+2sin^2xcos^2x=1# or #sin^4x+cos^4x=1-2sin^2xcos^2x#

and #sin^6x+cos^6x=1-3sin^2xcos^2x(sin^2x+cos^2x)#

= #1-3sin^2xcos^2x# - as #a^3+b^3=(a+b)^3-3ab(a+b)#

#color(white)#_____#color(white)"#

Now coming to proof as

#sin3x=3sinx-4sin^3x# and #cosx=4cos^3x-3sinx#

Therefore #sin^2 3x+cos^2 3x=(3sinx-4sin^3x)^2+(4cos^3x-3cosx)^2#

= #9sin^2x+16sin^6x-24sin^4x+16cos^6x+9cos^2x-24cos^4x#

= #9(sin^2x+cos^2x)+16(sin^6x+cos^6x)-24(sin^4x+cos^4x)#

= #9xx1+16(1-3sin^2xcos^2x)-24(1-2sin^2xcos^2x)#

= #9+16-48sin^2xcos^2x-24+48sin^2xcos^2x#

= #1#

Apr 11, 2017

Start from trig identity:
#sin^2 x + cos^2 x = 1#
In this identity, x is a variable, so we can substitute x by another variable X = 3x. Therefore:
#sin^2 X + cos^2 X = sin^2 (3x) + cos^2 (3x) = 1#